

Systems and Proposal Engineering Company, dba

SPEC Innovations was founded in 1993. The

company has worked on significant architecture

and systems engineering projects for the DoD, DOE,

and other government and commercial

organizations. Learn more at

www.specinnovations.com.

We began the development of Innoslate in 2010

when we found it challenging to do the work we

needed to do with the limited tools available at the

time. Innoslate was first released in 2012 on the

cloud and is currently in version 4.7 as a full lifecycle

tool, with integrated Systems Engineering and

Program Management capabilities. It uses the open

standard, Lifecycle Modeling Language (LML), as its

open ontology.

Innoslate currently supports users around the world

and is also available on NIPRNET, SIPRNET, and C2S,

as well as behind your own firewalls. You can learn

more about Innoslate by going to our website,

www.innoslate.com.

-1-

-2-

This guide explains how to co-simulate STK and MATLAB®
with Innoslate to refine design engineering results through
operational scenario models by following an operational
model of a lunar rover.

Ansys Systems Tool Kit (STK) allows you to model complex
systems in a realistic mission context using a dynamic
physics-based simulation environment. STK is integrated
with Innoslate’s Action Diagram to improve the fidelity of
the model by passing values, such as the time duration of
dynamic STK objects, from STK to Innoslate.

MathWorks® MATLAB® utilizes math, graphics, and
programming together to allow users to analyze data,
develop algorithms, and create models. MATLAB® is
integrated with Innoslate’s Action Diagram to improve the
model simulation by passing values between MATLAB®
and Innoslate to incorporate MATLAB® functions and
results in the simulation.

Below, "Co-Simulate STK Models in Innoslate" will discuss
the process of integrating Innoslate with STK, and "Co-
Simulate MATLAB Functions" in Innoslate will discuss the
process of integrating Innoslate with MATLAB®. A co-
simulation using STK, MATLAB®, and Innoslate's Action
Diagram was performed during the Lunar Rover project to
simulate the lunar rover’s mission on the lunar surface to
excavate icy regolith and deliver extracted water for 365
days or until the mission goal of collecting 10,000 kg of
water is reached.

-3-

CREATE A MODEL IN STKCREATE A MODEL IN STK
A model was built in STK to represent the lunar mission
environment. To do so, each aspect of the mission had to
be instantiated as various objects in STK. The Moon was
represented by declaring it as a central body in the STK
application window. The NASA site locations, including the
Extraction Plant, Excavation, and Delivery Sites, were
plotted using the lunar latitude and longitude coordinates
provided by the Break the Ice Challenge. Communication
satellites and infrastructure around the Moon were added
as well to illustrate contact with mission control on Earth.

Models created in STK were integrated with Innoslate
through Action diagrams. Once simulated, the results
produced in Innoslate provided a more detailed analysis of
the lunar rover’s mission on the surface of the Moon. The
following sections describe the processes conducted to
integrate STK models into Innoslate simulations for the
Lunar Rover project.

-4-

STK Satellite and Location Mapping

The fidelity of the STK model was increased by importing
publicly available lunar terrain information for the South
Pole. This data was obtained from the NASA Lunar
Reconnaissance Orbiter (LRO) missions. By incorporating
lunar terrain details, visuals for the terrain elevation,
obstacles, and cratered regions were incorporated in the
mission area of the STK model. The figure below is the
resulting high fidelity STK model.

Viable travel routes for the lunar rover to follow while
navigating between the mission sites were then visually
plotted. This was done while considering the rover’s terrain
incline limitations; it was nominally determined to plot a
route with inclines less than 30 degrees. The travel routes
were verified using topography maps provided by the
Break the Ice Challenge.

-5-

STK Lunar Environment Mapping

-6-

STK Model

Break the Ice Challenge Topography Map

Lastly, a constant velocity was defined for the rover by
declaring a STK Ground Vehicle object. This speed is later
used to calculate the lunar rover’s travel time values.

-7-

An operational scenario was created in Innoslate using
Action diagrams. The model below describes the lunar
rover’s mission on the lunar surface to excavate icy regolith
and deliver extracted water for 365 days or until the
mission goal of collecting 10,000 kg of water is reached.
Each Action in the diagram represents a specific process or
capability the rover will perform.

CREATE AN OPERATIONALCREATE AN OPERATIONAL
SCENARIO IN INNOSLATESCENARIO IN INNOSLATE

One Rover Asymmetrical Sequence Scenario

The operational scenario is described from the beginning
of the mission when the rover is landed on the lunar
surface to the end of the mission when the goal of
collecting 10,000 kg of water is achieved, or 365 days have
passed, whichever occurs first. In this model, there is one
rover on the surface of the Moon that is responsible for
excavating regolith, transporting regolith to extraction
plant, and delivering the extracted water to the designated
delivery site.

At the start of the scenario, the rover performs multiple
cycles of excavating regolith. Once its storage container
has reached maximum capacity, the rover then delivers
the collect regolith to the NASA Water Extraction Plant.
After the plant extracts water from the regolith, the second
phase of operation begins. The rover collects the water
from the Extraction Plant and transports it to the Delivery
Site. If the rover’s battery does not need to be charged or
the equipment warmed up, then the lunar rover will return
to the Excavation Site and repeat these processes.

-8-

The rover system will continue these actions until the
mission goal of delivering 10,000 kg of water has been met
or 365 Earth days have passed on the Moon. At the end of
the mission, the lunar rover deactivates and retires.

STK Initialization Action Entity

USE INNOSLATE/STKUSE INNOSLATE/STK
INTEGRATION APIINTEGRATION API
These two models from STK and Innoslate were then
combined to create a cohesive co-simulation of the
mission events.

A new Action entity, “Initialize STK Scenario Variables”, was
created and added to the beginning of the operational
scenario Action diagram in Innoslate. This entity serves as
an “initialization” block to hold Innoslate/STK API scripting.
The scripts added to the initialization block serve to
initialize and run the STK model and create global variables
for storing data acquired from STK in Innoslate. Duration
and velocity vector components were calculated using a
combination of Innoslate/STK Javascript methods with the
Ground Vehicle object acting as the rover in STK. NOTE:
Units and unit conversions must be handled carefully, as
the user must be aware of the units that output from STK
(STK Connect default units). STK automatically uses default
values for each dimension, such as time, distance, and
velocity (seconds, meters, meter/ seconds); however, in
Innoslate, it is the user’s responsibility to declare units and
perform any unit conversation as needed. This is done
within the Action block using scripting.

-9-

The figure below is a screenshot of the scripting used to
calculate the duration components, e.g. start & end times
in milliseconds. This data was extracted from the STK
model, and it represents the time the rover takes to
traverse the lunar rover route from the Excavation Site to
the Water Extraction Plant to the Delivery Site. Duration
values were then calculated from the duration
components (i.e. subtracting start times from end times in
milliseconds), and each was assigned to a unique global
variable that can be recalled later on in the simulation.

Script to Enable Innoslate/STK Initialization

-10-

Additional scripting was then added to all the Action
entities in the Innoslate operational scenario that refer to
the rover travel time. This was done by manipulating the
Innoslate scripting API to assign the time duration values
to equal the global variables that were created for the STK
duration components.

Shown below is an example of an Action entity that
required additional scripting to enable realistic process
times, “Travel Duration to Excavation Site.”

“Travel Duration to Excavation Site” Action Entity

In the screenshot of the script, the Innoslate Simulator API
was used to assign duration values derived from STK, via
the Innoslate global variables, to the respective Action
Entity.

Script to Enable STK Time Duration Values in Innoslate

-11-

The Delivery Site holds up to 10,000 kg of water for
long-term storage.
The rover travels the same route between the three
mission sites for every excavation. (Excavation Site to
Water Extraction Plant to Delivery Site back to
Excavation Site)
The rover has a maximum load capacity of 100 kg.
The rover has an average velocity of 0.3 m/s.
The rover has an excavation rate of 100 kg of regolith/
hr.
The rover charges its battery at the Delivery Site.
The rover can nominally perform 10 excavation cycles
before having to recharge.
The rover can nominally perform 20 delivery cycles
before having to recharge.
The rover has a charge time of 4 hours.
All unloading processes nominally take 15 minutes to
complete.
All loading processes nominally take 1 hour to complete.

Before the operational scenario Action diagram was
simulated, the following assumptions were defined:

Once the Innoslate/STK API scripts were added to the
Action diagram and the assumptions stated, the
operational scenario simulator was executed. The figure
below displays the Innoslate/STK co-simulation results.

INTERPRET INNOSLATE/STKINTERPRET INNOSLATE/STK
CO-SIMULATION RESULTSCO-SIMULATION RESULTS

-12-

From the co-simulation of the Innoslate Action diagram
and STK model, it was calculated the mission will take a
total time of 10.67 months to reach the mission goal of
collecting 10,000 kg of water goal within 365 Earth days.

Innoslate-STK Co-Simulation Results

Resources over Time Simulation Results

-13-

Looking at the final state of the resources, 10,000 kg of
water was successfully extracted and delivered by the end
of the mission. In addition, the total distance traveled by
the rover. This value has great implications for rover
performance, maintenance, and reliability characteristics,
especially since no rover has ever traveled this distance in
the past.

These simulation results help determine early on whether
the lunar rover design is feasible to complete its mission
given the constraints provided by the NASA Break the Ice
Challenge.

By tracking the resources used throughout Innoslate’s
model execution, see the ‘Resources Over Time’ panel, it
was concluded a majority of the rover’s mission time will be
dedicated to the excavation and extraction processes.

Resource Final Amounts Simulation Results

-14-

Functions created in MATLAB were integrated with
Innoslate through the use of Action diagrams. Once
simulated, the results produced in Innoslate provided a
more detailed analysis of the lunar rover’s mission on the
surface of the Moon. The sections following describe the
processes conducted to integrate MATLAB functions into
Innoslate simulations for the Lunar Rover project.

CREATE A FUNCTION INCREATE A FUNCTION IN
MATLABMATLAB
Once the two models created in Innoslate and STK were
co-simulated, MATLAB was used to verify the calculations.
Velocity vectors in the X, Y, and Z planes were retrieved
from STK through Innoslate and used to calculate a
magnitude value to represent the rover velocity.

The Figure below displays the function script written in
MATLAB to compute the magnitude of velocity given the
three input parameters, the velocity vectors in the X, Y, and
Z planes.

MATLAB Function Script

-15-

After the function script was written in MATLAB, MATLAB
integration APIs were then added to the Innoslate
operational scenario previously created. This was done
using scripting in another initialization Action entity,
“Initialize MATLAB Variables”, that was added to the
beginning of the Action diagram.

USE INNOSLATE/MATLABUSE INNOSLATE/MATLAB
INTEGRATION APIINTEGRATION API

MATLAB Initialization Action Entity

Within the MATLAB initialization Action entity, the velocity
vector components were extracted from the STK model in
the X, Y, and Z planes relative to their central body, the
Moon, at the initial start time. Then, they were used to
calculate a velocity magnitude in MATLAB via a GET
request. The distance value was calculated by multiplying
the time duration by the velocity magnitude and assigned
to a unique global variable for later use.

-16-

Once the MATLAB scripts were added to the MATLAB
initialization Action entity, additional scripting was also
added to all the Action entities within the Action diagram
that refer to rover travel durations. This is done to
continuously record and update the total distance the
rover has traveled on the surface of the Moon. A Resource
entity, “Total Distance Travelled”, served as a counter to
compute the total distance the rover travels during its
mission.

Script to Enable Innoslate/ MATLAB Initialization

-17-

The figure below displays the script used for the Action
entity “Travel Duration to Excavation Site”. Within the
script, the global variable containing the distance value is
obtained and manually added to the Resource entity,
“Total Distance Travelled”, in order to update the current
total distance traveled by the lunar rover.

“Total Distance Traveled” Resource Entity

Script to Enable Total Distance Traveled Computation

Once the MATLAB scripting was added, the final step was
to enable the Innoslate/MATLAB integration by attaching
the current location of the MATLAB Java Web Application
(JWA) to the MATLAB Integration URL field (e.g.
“http://localhost:8080/integrations/MatlabServlet”) found in
the Innoslate simulation settings, shown below. Without it,
the simulation will not properly execute the
Innoslate/MATLAB integration APIs.

-18-

After completing all necessary scripting and enabling the
Innoslate/MATLAB integration APIs, the operational
scenario Action diagram was executed in the simulator.
During simulation, MATLAB calculated distance values
with the help of Innoslate and STK, allowing for a realistic
estimate of the total rover travel distance. The figure below
is a screenshot of the Innoslate/MATLAB/STK co-simulation
results and a screenshot of the real-time console output of
the MATLAB calculations.

INTERPRET INNOSLATE/INTERPRET INNOSLATE/
MATLAB CO-SIMULATIONMATLAB CO-SIMULATION
RESULTSRESULTS

-19-

Innoslate Simulation Results – MATLAB

MATLAB Simulation Results Console

-20-

Resources Over Time Simulation Results

From the co-simulation of the Innoslate Action diagram
and MATLAB function, it was calculated the mission will
take a total time of 10.67 months to reach the mission goal
of collecting 10,000 kg of water goal within 365 Earth days.
These results verify the conclusions calculated during the
Innoslate/STK co-simulation.

Resource Total Amounts Simulation Results

-21-

Observing the “Total Distance Travelled” Resource entity in
the Resources Over Time and Resource Final Amounts
graphs, it was concluded the total distance traveled
amount reached roughly 3,500 km. This value has great
implications for rover performance, maintenance, and
reliability characteristics, especially since no rover has ever
traveled this distance in past missions.

These simulation results from MATLAB help consider
potential expected and unexpected behaviors of the
system during the mission, which can be used to further
refine requirements, confirm system solutions, and aid risk
management throughout the project.

STK provides accurate times the simulated rover travels
to navigate between the various sites on the surface of
the Moon.
Innoslate’s Action diagram adds additional processes
such as communication, maintenance, operator-in-the-
loop, and expected failure conditions.
JavaScripting in the Innoslate Action entities linked
together the STK model with the Action diagram.

To summarize the Innoslate/STK/MATLAB co-simulation
results:

-22-

When the Innoslate Action diagram is simulated, global
variables are used to retrieve data from the STK model,
and they are traced throughout the diagram’s
execution to calculate the time to collect 10,000 kg of
water and the total distance traveled during that
mission.
Functions in MATLAB can also be implemented in the
Action entities via JavaScripting to execute with the
Innoslate Action diagram. This co-simulation verifies the
Innoslate/STK co-simulation if the same results are
calculated.
Performance characteristics can be manipulated to run
multiple scenarios using this co-simulation process. In
the STK model, change the speed of the rover or modify
the route the rover follows to complete its mission, then
run the simulation again in Innoslate to determine the
impact on mission results.

