

Systems and Proposal Engineering Company, dba
SPEC Innovations was founded in 1993. The

company has worked on significant architecture
and systems engineering projects for the DoD, DOE,

and other government and commercial
organizations. Learn more at
www.specinnovations.com.

We began the development of Innoslate in 2010
when we found it challenging to do the work we

needed to do with the limited tools available at the
time. Innoslate was first released in 2012 on the

cloud and is currently in version 4.7 as a full lifecycle
tool, with integrated Systems Engineering and

Program Management capabilities. It uses the open
standard, Lifecycle Modeling Language (LML), as its

open ontology.

Innoslate currently supports users around the world
and is also available on NIPRNET, SIPRNET, and C2S,
as well as behind your own firewalls. You can learn

more about Innoslate by going to our website,
www.innoslate.com.

-1-

This guide explains how to use GitHub with Innoslate to
modify and store live code repositories by following code
created and used in a lunar rover prototype. GitHub is a
web-based platform that allows developers to host,
manage, and collaborate on software development
projects using version control, issue tracking, and other
features. Below discusses each feature of the GitHub
interface and how it was used to interact with the code
repositories for the lunar rover prototype.

-2-

The GitHub integration in Innoslate provides an interface
to exchange information between various users in an
Innoslate project. Three actions can be performed to
conduct the exchange of information between the two
tools. These actions are Issues, Commits, and Pull Requests.

Issues are used to track work in GitHub. They can help the
user organize and prioritize work that needs to be done
within the current project. Issues can be differentiated
using labels, assignees, and milestone relationships.

Commits are the history of a repository throughout
development during the project. Commits tell a story
through the progression of each repository in a project.
Commits can be differentiated using assignees and
timestamps.

-3-

Once a repository has been branched or forked, Pull
Requests can be used to update and track its development
in a project. The Pull Request is the final touch to tracing
any Commits to their related Issues.

LOGIN TO GITHUB VIEWLOGIN TO GITHUB VIEW
A GitHub account along with a specialized token is
required at login to access the GitHub View integrated
with Innoslate.

GitHub View Login

When the unique token is used to access the GitHub View,
any repositories and files attached to that token are
opened and listed in the GitHub View dashboard. The
figure below is a screenshot of the GitHub View
maintained for the Lunar Rover Project.

There are four code repositories listed for the GitHub View
in the Lunar Rover Project. Key features such as
programming language, license, and date the repository
was last updated are listed for each repository in the
GitHub Dashboard.

-4-

GitHub Dashboard

VIEW THE REPOSITORYVIEW THE REPOSITORY
DASHBOARDDASHBOARD
Each repository also has its own dashboard to display
recent activity and a list of the information exchanged
between GitHub and Innoslate. The figure below is a
screenshot of the SPECTER Firmware repository in the
Lunar Rover Project.

Number of active Pull Requests
Number of active Issues
Recently opened Issues
Rate of Commits made per week
Recent Commits

The Innoslate Repository dashboard has widgets to display
the following information:

-5-

Repository Dashboard

VIEW THE REPOSITORYVIEW THE REPOSITORY
DASHBOARDDASHBOARD
GitHub Issues can be created in each Innoslate repository
by navigating to the ‘Issues’ tab on the left side panel.
When creating a GitHub Issue the following metadata is
encouraged to differentiate the Issues: name, description,
assignee, and labels. The figure below is a screenshot of the
Issue Creation prompt.

Once created, the GitHub Issue is stored in Innoslate and
cloned to GitHub.

-6-

GitHub Issues Metadata

CREATE GITHUB COMMITSCREATE GITHUB COMMITS
Each GitHub Commit in Innoslate is a clone of the Commit
found in GitHub. Commits can be easily understood as
edits made within a file or code in the repository. Metadata
that can be added to the Issue in Innoslate includes a
description and assignee. Use this information to track the
progress made in the repository. Below is a list of the
Commits made to the SPECTER User Interface repository.

GitHub Commits Metadata

-7-

GitHub Pull Requests are the final submission of an Issue.
Each Pull Request is also a clone from GitHub. Innoslate
notifies the user of each Pull Request to allow them to
check the GitHub platform for the changes to be approved.
Within GitHub, the user can view all the Commits and
Issues related to the Pull Request.

If more information is required for the Pull Request, then
comments can be added directly in Innoslate. Comments
can be used to clarify any confusion in the Pull Request for
provided feedback for the assignee or reviewer.

GitHub Pull Requests Metadata

CREATE GITHUB PULLCREATE GITHUB PULL
REQUESTSREQUESTS

-8-

The two LEO Rover GitHub repositories for developing the
prototype’s firmware and user interface were cloned by the
SPEC team to be modified for this Lunar Rover Project. The
LEO Rover’s firmware sends messages to components in
the prototype using the connection between the processor
and the component that performs the specified function.
The user interface is used by operators to view and create
commands for controlling the rover’s actions and receiving
diagnostics from the prototype’s hardware.

These two cloned repositories for the rover prototype are
stored in Innoslate’s GitHub View, and they hold all the
code to develop SPECTER’s firmware and user interface.
LEO Rover’s default settings were kept for the firmware
and user interface.

MODIFY THE FIRMWAREMODIFY THE FIRMWARE
REPOSITORYREPOSITORY
To gather data using SPECTER’s lidar, modifications were
made to the firmware for recording the distance obstacles
from the rover body as well as ambient temperatures. This
information is used to provide data and diagnostics of the
rover’s surrounding area. The following sections step
through creating Issues and submitting changes to
develop an interface for streaming the above metrics
directly to the rover operator.

-9-

First, an Issue was created to alert SPEC’s software team of
the new feature to be added to the user interface:
including the lidar sensor in SPECTER’s robot operating
system (ROS). The figure below is a screenshot of this Issue.

ASSIGN THE LIDAR TO THEASSIGN THE LIDAR TO THE
PROCESSING PORTPROCESSING PORT

Lidar – ROS GitHub Issue

Once the Issue was published and cloned to the GitHub
platform, it was assigned a SPEC software team member
for the feature creation. Edits to the code were made in
GitHub and submitted as Commits. These Commits
exchanged the information from GitHub to Innoslate for
publishing.

Lidar – ROS GitHub Commit

Once the Commit was made to allow SPECTER to
communicate and send messages via the firmware, a
reviewer from the SPEC software team examined the code
written to verify it was ready for publishing. After reviewing
the Commit, it was decided the code needed continuing
edits and would not be published yet. The figure below
displays the reviewer’s comment made to disapprove of
the Commit.

-10-

Lidar – ROS GitHub Commit Reviewer Feedback

The original writer reviewed the reviewer’s comments and
continued editing the code to meet SPEC Innovation’s
software standards. These edits were also submitted as
Commits. The figure below highlights the changes made.

Lidar – ROS GitHub Commits

 Once the code updates were complete, the reviewer read
the new Commits and determined the code to be ready for
publishing. The Commits were then submitted as a Pull
Request, and the Issue was closed. The figure below is the
final comment resolving the Issue.

-11-

TRANSMIT TEMPERATURETRANSMIT TEMPERATURE
DATADATA
An Issue was also created for developing an ambient
temperature recording to be outputted from the Lidar
sensor and displayed in the user interface. The figure below
shows this GitHub Issue.

Lidar – ROS GitHub Pull Request

Lidar – Temperature GitHub Issue

-12-

A final Issue was created for developing an output of
distance data from the Lidar sensor to create an obstacle
avoidance warning on the user interface. The figure below
is a screenshot of the Issue created for this feature.

Once the Issue was published and cloned to the GitHub
platform, it was assigned to a SPEC software team
member to be addressed. Any edits to the code were made
on the GitHub platform and submitted as Commits to be
exchanged with Innoslate. After the Commits were
reviewed and approved, the edits were summited as a Pull
Request, and the Issue was closed.

Lidar – Temperature GitHub Pull Request

TRANSMIT DISTANCE DATATRANSMIT DISTANCE DATA

Lidar – Distance GitHub Issue

-13-

The same processes as mentioned with the other two
issues were followed. However, the reviewer noticed the
units used for distance parameters were incorrect and
needed to be converted to meters. The figure below
displays this comment made by the reviewer.

Lidar – Distance GitHub Commit Reviewer Feedback

Once the SPEC software team member made the edits
and pushed the Commit, the Pull Request was submitted,
and the Issue was closed.

Lidar – Distance GitHub Pull Request

-14-

Ambient temperature recording
Distance to obstacles from the rover body’s front and
rear display
Warning signal if a certain distance is reached to an
obstacle
The user interface features provide diagnostic feedback
to alert the operator of the rover’s surrounding
environment.

SPECTER’s user interface allows the operator to view
messages received from the prototype’s processor. These
messages and interface features include:

MODIFY THE USER INTERFACEMODIFY THE USER INTERFACE
REPOSITORYREPOSITORY

DISPLAY LIDAR DATADISPLAY LIDAR DATA
An Issue was created to develop a display for the Lidar
messages on the SPECTER’s UI.

UI – Lidar GitHub Issue

-15-

Once the Issue was published and cloned to the GitHub
platform, it was assigned to a SPEC software team
member to be addressed. Edits to the code were made in
GitHub and then submitted as Commits to be published
on Innoslate. The figure below displays a list of the
Commits made in GitHub to create lidar message displays
on the user interface.

UI – Lidar GitHub Commits

Another SPEC software team member reviewed the
Commits and decided the Lidar information needed to be
parsed into two categories: Distance of Upcoming
Obstacles and Ambient Temperature. The reviewer also
recommended adding SPEC’s logo to the user interface.
The figures below display the comments made by the
reviewer on the Commits.

-16-

UI – Lidar GitHub Commit Reviewer Feedback

Once the code was updated and the changes were
approved by the reviewer, the Commits were submitted as
a Pull Request, and the Issue was closed.

UI – Lidar GitHub Commit Reviewer Feedback

-17-

UI – Lidar GitHub Pull Request

Lastly, an Issue was also created to develop a warning alert
display on the rover’s UI for when SPECTER’s body
approaches an obstacle too closely. The figure below
displays this Issue.

DISPLAY OBSTACLE WARNINGDISPLAY OBSTACLE WARNING
MESSAGESMESSAGES

UI – Warning GitHub Issue

-18-

UI – Warning GitHub Commits

Once the Issue was published and cloned to the GitHub
platform, it was assigned to a SPEC software team
member to be addressed. Any edits to the code were made
in GitHub and then submitted as a Commits to be
published on Innoslate. The figure below displays a list of
the Commits made in GitHub to create warning message
displays on the user interface.

Once the code was updated and the changes approved by
the reviewer, the Commits were submitted as a Pull
Request, and the Issue was closed.

